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Yale University has implemented a knowledge graph-based discovery system, that brings together 
the various art, natural history, archival, conservation and bibliographic collections using Linked 
Open Usable Data standards such as Linked Art and IIIF. This system comprises more than 41 million 
records, which would expand to more than 2 billion RDF triples. This paper presents the lessons 
learned from the five-year effort to establish usability of linked data structures across the organization, 
and the technologies needed to make use of the knowledge in a performant way. It also considers the 
appropriate design paradigms for front end applications which make the graph easily and intuitively 
accessible to researchers and the public, including the necessity of consistency in data modeling, that 
records are an essential concept worth maintaining in multi-modal systems, and the use of hypertext 
and web caches to maintain the separation between systems.
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Introduction
Between 2018 and 2023, Yale University designed, implemented, and published a novel 
cross-collection and cross-domain discovery application to enable unified digital 
access to the cultural heritage items in its museums, libraries, archives, and special 
collections. This application, called LUX,1 was built using Linked Open Usable Data 
(LOUD) (Raemy, 2024; Sanderson, 2018). The fundamental paradigm was to ensure that 
the collections were presented in a connected and coherent fashion, rather than merely 
aggregating the records. Prototypes were built and evaluations performed throughout, 
to find the most appropriate solutions around data, technology and the interactions 
between systems and people—be they end users, data and software engineers, or 
content providers. The resulting application is in active use by faculty, staff, students, 
and the general public, who use it to discover and engage with the collections held by 
the university. The code is also available via the GitHub platform.2

This article reports on the implementation and analysis performed to evaluate the 
overall utility and usability of Linked Data for cultural heritage discovery systems. 
We show that, by following design principles that emphasize usability over semantic 
completeness, implementations can be richer and provide generous interfaces to the 
benefit of users. It is divided into sections based on the three core areas of work: the 
data, the technologies used, and the design of the front-end application.

Linked Art Data
The first aspect to consider for a cross-domain discovery system that will provide access 
to multiple collections, is the availability, quality, and feasibility of modeling all existing 
data from the systems into a coherent and connected whole. The resulting aggregation 
needs to be understandable to users interacting with it as a single platform, rather than a 
Frankensteinian horror with disjointed parts roughly sewn together. This section discusses 
the history, requirements and resulting selection and customization of the Linked Art data 
model for use as the backbone of the LUX application (Sanderson, et al. 2024).

Background
Starting in 2009, Yale embarked upon a cross-collection discovery platform (Bellinger, 
2011) for its museum collections using technologies available at the time like Solr 
(Apache, 2024), XML (W3C, 2008) and OAI-PMH (OAI, 2015). For various reasons, this 
project was not maintained but it did serve as a starting point and an experiment that 

 1 Available at https://lux.collections.yale.edu/.
 2 Available at https://github.com/project-lux/.
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the LUX development project took into account. The initial prototype for LUX used 
these same technologies, but with the intent of extending the data to include libraries 
and archives, and to reconcile references to people, organizations, places, and concepts 
across the collections through the use of both student effort and automation. This 
prototype demonstrated the limitations of the technology stack and data structures, 
quickly becoming overwhelmed by the use of identifiers for every entity referenced in 
the records. Moreover, it was unable to provide the desired interactions either for cross-
record searching, or the presentation of the reconciled contextual entities as individual 
pages. This led to the establishment of a set of foundational requirements with which 
to assess data structures and the technologies that would support them.

Requirements
The initial requirements for the data were generated to evaluate the feasibility of the 
desired interactions, given the existing data and the estimated ability over the course of 
the project to reconcile references across collections and datasets. This practical, results-
driven target was extremely valuable, as it avoided many cross-domain discussions 
about metadata standards: instead of comparing standard A with standard B, both were 
independently and relatively objectively compared to the same set of requirements.

A summary of the core initial requirements and the intent of their inclusion are as 
follows:

1. The data must describe all collection items, as well as the people and organizations, 
places, and subjects that they reference, to provide context for the items.

2. There must be a single, normalized record for each item and referenced entity, to 
bring information from across collections together and provide a “hub” page in 
the user interface, through which the user can discover related items.

3. The user must be able to navigate between item pages and hub pages seamlessly, 
understanding the relationship between the item and the hub page entity, but 
each must be independently understandable.

4. All significant fields of the underlying source records must be represented in a 
clear fashion in the shared data structure, respecting the uniqueness and value 
of the different domains while enabling the presentation of a single, coherent 
interface, to ensure that all collections are well represented.

5. Users must be able to search for collection items using the information about 
both them and their related entities, to allow precise targeting of queries and to 
expand upon functionality already available within the individual collections’ 
discovery systems.
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Although not an absolute requirement, it was readily and enthusiastically acknowledged 
that if the data structure was easy to understand and use by software engineers, 
then more time would be available to work on LUX itself because there would be less 
investment needed to understand an arcane or inconsistent specification.

These requirements, plus a prototype built using the Yale Center for British 
Art dataset (YCBA, 2024) and the open-source Arches platform (Farallon, 2024), 
demonstrated the importance of the knowledge graph paradigm and facilitated the 
transition from a custom XML schema to the Linked Art metadata application profile.

Linked Art Data Model
The Linked Art data model was initially developed for the Mellon-funded American Art 
Collaborative (AAC, 2017) project, and subsequently adopted by the J. Paul Getty Trust 
as a basis for their linked data efforts. It was then brought back to the community for 
discussion and engagement, with support from projects funded by the Kress Foundation 
and the Arts and Humanities Research Council in the UK. 

It is built as a metadata application profile of the CIDOC Conceptual Reference Model 
(CIDOC-CRM) (CIDOC, 2024) plus minimal extensions, with the intent to reduce the 
number of choices that developers need to make, for increased ease of use, understanding 
and interoperability. Through use of CIDOC-CRM, it inherits a well-discussed and 
standardized conceptual model and ontology of classes and relationships, and thus the 
development of Linked Art focused on aligning that model with real-world practices, 
data and use cases. It is necessary to briefly outline the features of the model before 
turning to its appropriateness for the product and how well it meets the requirements 
set out.

Classes

Linked Art uses a small number of classes from CIDOC-CRM and provides more 
memorable names for them for developers to use in data—rather than requiring the 
memorization of arbitrary numbers. If more specific information is available, for 
example to distinguish between a painting and a sculpture, then this information is 
conveyed as a classification at the vocabulary level, rather than as a class at the ontology 
level. The classes align well with the requirements for LUX, and maintain the separation 
desired for both “item” and “hub” entities.

Collection items are either physical objects using the class HumanMadeObject, or 
digital files which are expressed with the class DigitalObject. People and organizations 
use the classes Person and Group respectively, and geographic places are well 
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accommodated by the Place class. Concepts or subjects have a wider range of classes, 
based on the nature of the conceptual entity, and rely on the specific classes of Language, 
Material, and MeasurementUnit, with the broader class Type used for general subjects. 
This fulfilled the baseline requirements; however, in the assessment, the bibliographic 
notion of object (or “holding” in library parlance) being separate from the work 
became important, as well as events that took place using the collection items, such as 
exhibitions.

In order to distinguish between multiple physical or digital copies of a particular 
text without repeating the information in every record, and similarly between multiple 
copies of a particular piece of visual content, Linked Art has the notion of intellectual 
works in the same way as existing bibliographic ontologies and models such as the 
Library of Congress’s BibFrame (LOC, 2024), or IFLA’s LRM or FRBR (IFLA, 2018). 
Unlike those more complex systems, Linked Art uses only two classes: LinguisticObject 
for works that are primarily based on language and intended to be read, and VisualItem 
for works that are primarily based on image and intended to be seen. A single instance of 
a LinguisticObject, such as the text of a book on philosophy, can be carried by multiple 
physical and/or digital objects, allowing the holding and the bibliographic information 
to be connected. The same applies with visual content, such as multiple casts of a 
sculpture or prints of a photograph.

In order to deal with exhibitions and other activities such as provenance, Linked Art 
has a broad class of Activity. This can then have classifications that are more specific to 
the sort of activity described, and connects the items used, the people and organizations 
that participated in the activity, the place where it was carried out, and the time or dates 
when it occurred. 

The last class needed is for dealing with archival collections, departmental or 
institutional collections, and the sets of objects used in an exhibition. The underlying 
CIDOC-CRM ontology does not have the capability of including both physical and 
digital items, let alone conceptual works or other classes, and thus the Linked Art 
metadata application profile has a small extension that defines a class called Set. This 
class represents a mathematical set that can have members of different types.

For example, the painting ‘The Artist’s Garden in Giverny’ (LUX, 2024) is a 
HumanMadeObject, produced by the Person: Claude Monet. It is classified as being a 
particular Type: a painting, and is made of the Material: oil paint. It shows a VisualItem, 
which in turn depicts the Type: flowers and the Place: Giverny. It has a home page, 
represented as a DigitalObject at its home museum of the Yale University Art Gallery. 
It is a member of the Set of objects which represents the European Art Collection at 
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the Gallery, which is in turn curated by an Activity carried out by the Group which 
represents the European Art department. 

These classes more than fulfilled the baseline requirements and helped to clarify 
understanding across domains, by expressing data in a foundational and conceptual 
model; rather than trying to cross-walk between domain-specific models, which has 
been the downfall of many projects throughout information science history.

Relationships

The relationships between the core classes are more extensive and express much of the 
knowledge in the graph but are still few enough to be easily understood and used.

Instances of any class can be member_of a Set, and can be classified_as a Type, 
including instances of Set and Type respectively. Place instances can be part_of a 
larger Place, allowing the description of a spatial hierarchy, but otherwise do not have 
relationships out to other classes. Similarly, Type instances and other concepts can 
have a broader Type, and are conceived into existence through an activity, which can be 
carried_out_by a Person or Group, took_place_at a Place, and can be influenced_by 
entities of any class, but otherwise do not have other relationships. Instances of Person 
and Group are born or formed_by an event embedded within their record, which in turn 
took_place_at a Place. They can also have a residence at a Place, and can be member_of 
a Group. This leaves the core relationships to be carried by the main entities of interest: 
the collection items and the intellectual works.

HumanMadeObject instances can carry a LinguisticObject or show a VisualItem, 
and in parallel a DigitalObject can digitally_carry a LinguisticObject or digitally_
show a VisualItem. Digital collection items are created_by an embedded activity, and 
physical items use the produced_by relationship. While there is a relationship for the 
destruction of an item, it would no longer be in the collection, and hence we do not need 
this in the Yale use case. Objects that enter the cultural record by being found rather 
than created use the encountered_by relationship. Physical objects can be made_of a 
Material, and also have a current_owner of a Person or Group and a current_location 
of a Place.

Instances of LinguisticObject can also come into existence through the use of 
a created_by relationship to an activity, and are published by being used_for a 
publication activity. Both can be about an instance of any other class to describe their 
subjects using the about relationship, and VisualItem can have a represents property 
referring to any other class that the image directly depicts. LinguisticObject instances 
refer to the Language they are written in through the language property. These classes 
and relationships are summarized in Figure 1.
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Figure 1: Summary of Linked Art Classes used in LUX.

Data patterns

The relationships described above are the pathways between the main classes; 
however, there are also several patterns, which are used on all of the classes within 
the records in order to express information directly about them (properties), rather 
than relationships between the records. These patterns include important information 
such as names, identifiers, descriptions, and external links outside of the data. Rather 
than go into detail about their internal structure, it suffices to enumerate them; to 
demonstrate that all of the core data modeling requirements can be met.

The patterns in use are:

1. Name or Title, through the identified_by property, which can have content, 
language and classifications using classified_as.

2. Identifiers, also through the identified_by property, which have content and 
classified_as, but not language. Identifiers are also used to describe the address 
or contact_point of an entity.

3. Descriptions or statements of any sort, through the referred_to_by property, 
which mirror the Name structure, but have longer textual content.

4. Dimensions, through the dimension property, with a numerical value, a 
MeasurementUnit instance, and a classification such as height or width.

5. References to external websites, images, APIs or other digital resources through 
the subject_of property, including a name, classification and the access_point 
URI to retrieve them.
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6. External resources which also describe the same entity are linked through the 
equivalent property.

7. Finally, the date and time are embedded within the activities (either within 
records or separately) using a TimeSpan construction that records the earliest 
possible beginning, latest possible end, and a human readable form of the time.

We can now assess the model against the requirements, data, usability by software 
engineers, and the core use cases.

Evaluation
It is clear from the above description that the majority of the requirements are met by 
the Linked Art model. The aspects that bear further discussion are: how well it can deal 
with domains outside of its target of art museum collections, the real-world data that is 
managed in the different collection management systems, and its usability by software 
engineers without a background in art history or library science.

Cross domain modeling and data

Linked Art was easily able to capture the vast majority of the information managed by the 
two art museums’ collection management systems. A small number of scenarios were 
not able to be captured as structured data, as they had been determined by the Linked 
Art community to be too complex compared to the value, such as knowing explicitly 
that the artist was one person or the other but not both and other detailed descriptions 
of uncertainty of attribution. Other edge cases included when the museums wanted a 
specific label or presentation in the application but that information was not carried 
by the metadata and could not be generalized across all of the datasets. Some of these 
were later addressed with additional statements associated with parts of the records, for 
example the role of a particular maker within the production of an object can be described 
in more detail in a statement to render, whereas the reference to the person and the type 
of activity can be expressed as structured data along with that descriptive content.

The information about the natural history collections of the Yale Peabody Museum 
(YPM, 2024) was perhaps the furthest from the domain of art and cultural heritage, 
being concerned with animal, plant and mineral specimens collected from around the 
globe. The Peabody is also the steward of other objects including Babylonian tablets 
and a collection on the history of science, which fall more cleanly into the art museum 
case. The primary difference for the specimens is that they do not carry an intellectual 
work, as they were not produced by a human with creative intent. Cleanly separating 
the physicality of the object from the intellectual work is a strength of the data model, 
allowing an accurate description of museum objects which do not carry designations 
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as creative works. The compromise, made for consistency, usability and standards-
conformance of the data, was that even though the specimens are not made by humans, 
the system would still use HumanMadeObject for the class. Part of the rationale was 
that some specimens really are HumanMadeObjects, as they were actively repaired, 
reconstructed, or fabricated by conservators over time. The alternative would have 
been to have a separate PhysicalObject class, used only for specimens; the gain would 
have been purely semantic rather than practical.

The Type class was easily able to deal with taxonomic hierarchies, and the Group 
and Activity distinction meant that expeditions could be separated as to who went (the 
Group) from where and when they went (the Activity). The area which was the most 
difficult to model was stratigraphy, which simultaneously describes both geologic 
time and spatial location through the analysis of the layers of rock (or strata) and their 
positions relative to each other. This detail is the subject of ongoing work, with an initial 
model that introduces a new class to handle caves, arches, strata and other inseparable 
features of the natural world.

The modeling of archives using Linked Art was relatively easy after an initial decision 
was made as to the nature of an “Archive”. Archival tradition conflates the description 
of the intellectual arrangement of the accessioned objects and their physical location 
into a single hierarchy for convenience of non-graph based descriptive formats, such 
as XML. It was necessary, therefore, to decide if the archive was a physical and/or 
spatial hierarchy of things at locations, or the product of human creativity in arranging 
the objects in that particular way. By separating the location from the arrangement, 
we could then determine that an archival collection was a Set (as a conceptual entity) 
of either other Sets (further divisions within the arrangement) or instances of 
HumanMadeObject or DigitalObject (the items themselves). Some of those items have 
known locations in space (Places) or are contained within other HumanMadeObjects, 
such as a letter being within a folder. This analysis was then discussed by the Linked Art 
community, as many art museums have related archives.

The vast majority of the records came from the Yale University Library collections 
(YUL, 2024), totaling some 13 million works, and comprising more than 30 million 
individual Linked Art records. The split between objects and works was important for 
this discussion as well, as some objects carry multiple works (such as a manuscript that 
contains several distinct texts by different authors), and many works are carried by 
multiple objects (such as multiple copies of the same textbook). Again, the vast majority 
of the information managed in MARC was easy to map into the Linked Art model. No 
serious attempt was made to reconcile works, as there is insufficient information 
in existing databases to do it in a way that would introduce more value than errors; 
however, if that were possible, the data model would support it.
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The challenge regarding library data was not modeling but rather extracting the 
knowledge from the MARC format in a way that had never been done before, thereby 
exposing significant issues with the interpretation of the record as knowledge, rather 
than its rendering as HTML. An amusing error was when the barcode of an object was 
mistyped into a subfield of a person, resulting in it appearing to be the person’s death 
date of some trillions of years in the future. While that was a straightforward fix, an 
ongoing issue is the use of incorrect subject heading subfields for places, resulting in 
states being part of cities, and countries on opposite sides of the world being embedded.

Overall, while there were some areas that required minimal additions and a small 
number of situations that were not feasible to model. However, Linked Art easily 
met all of the requirements to describe these four different domains with a coherent, 
connected and relatively complete data model.

Usability

The second test of the model was the extent to which it was easy for data and software 
engineers to produce and consume records that conform to the model. In LUX there are 
three distinct areas that require engineering effort: the creation of the linked art records 
from the collection records as handled by software engineers within the collecting units, 
in conjunction with subject matter experts such as curators or collection managers; 
the integration, reconciliation and enrichment of those records into a single coherent 
dataset by data engineers centrally; and, the use of the resulting data to produce an 
intuitive and highly functional discovery system for end users, by software engineers 
and user experience designers.

The first project participants to directly interact with the data model were the 
collection system managers and software engineers within the individual collecting 
units. This required, for each unit, around six to ten hours of discussion to generate 
a mapping from the system of record into the data model, followed by iterative work 
to implement that mapping in code. This included the four distinct domains of art, 
natural history, archival collections and bibliographic records, across five collection 
management systems. Each collecting unit designed and implemented different 
processes for the transformation based on the nature of their data and the skills of 
the available software engineers. These transformations were accomplished quickly, 
with the exception of the library data, due to the scale of that collection—some 13 
million items. For the mapping and transformation from existing systems of record, 
this demonstrated that a cross-domain, graph data model was not an obstacle. This 
has subsequently led to other collections being mapped and transformed, including 
the School of Music’s collection of musical instruments, the Campus Art Collection 
owned by the University directly, conservation related collections in the Institute for 
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the Preservation of Cultural Heritage, and the collections of the Paul Mellon Center in 
the UK, such that they can be added to LUX.

The records are then harvested, as discussed in the next section, and further 
manipulated to generate a single, coherent dataset. The assessment of usability for 
this purpose is heavily biased, as the central data engineering was performed by the 
author and a data engineer with several years of experience with the model. With that in 
mind, the features of the model lent themselves adroitly to the tasks to be performed, 
especially for the alignment of the internal records with external datasets that describe 
the same entities and the subsequent merging of up to more than a dozen records 
into a single, enriched description. With a strong conceptual model, and consistent 
data structures, comparison of records from very different domains and systems was 
significantly easier than dealing with the information in the native formats.

Thirdly, once there was a dataset built, software and UX engineers engaged with 
the data model to design and implement an understandable and useful discovery 
environment. This required understanding both the abstract model, in order to design 
the interactions between records for searching and linking, as well as the details of the 
JSON-LD (W3C, 2020) format, in order to extract, index, and render the different fields 
appropriately. The software engineers had had only limited exposure to the cultural 
heritage domain, and the main front-end engineer had a mere two years of post-degree 
experience when she started, yet they were able to quickly understand and productively 
use the data. This end-to-end workflow, encompassing a variety of experience, tools 
and platforms, has demonstrated that Linked Art is easy to implement, using a variety 
of environments, by relatively junior technical staff members.

Reconciliation and Enrichment
Beyond the internal sources of data, at the time of writing more than 20 external data 
sources were also used to both reconcile and enrich the knowledge about the person, 
organization, place and subject records. These sources were mapped and transformed 
by the data engineering team as part of the transformation pipeline, including cultural 
heritage authority data such as the Getty, Library of Congress, and OCLC vocabularies, 
large scale international datasets such as the National Libraries of France, Spain, 
Germany, Japan and Sweden to provide additional international perspectives, and 
more general datasets such as Wikidata. This further tested the data model and 
provided significant knowledge to ensure that the entities had sufficient description 
and relationships to play an active contribution to the overall knowledge graph.

A core benefit of having a target lingua franca for the knowledge mapping was that 
processing and merging the records, regardless of where they came from, was relatively 
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easy in comparison to having to deal with all of the systems’ native representations. 
The availability of equivalent URIs for the same entity from both internal and external 
sources meant that these could be quickly matched up to create a cloud of information 
about the entity, with a high degree of confidence that the records really did describe 
the same thing. This was more successful for people, organizations and places than the 
subjects and other more theoretical concepts; however, the value added through the 
process greatly outweighed the errors that it also introduced. While it is out of scope 
to discuss the exact algorithms and challenges of the reconciliation and enrichment 
pipeline in this article, the project would not have been possible without this functionality 
built into the architecture, and the data model directly facilitated the processing.

Linked Data Technology
Data sitting on a computer has no value, without software to manage and make it 
available to the target audience; the author’s long experience of engaging with linked 
data tools is that they are either unusably slow, unintuitive, incredibly complex, very 
expensive, and frequently all of the above. For Yale to implement Linked Art, a solution 
was needed that would make the knowledge easily accessible to all, without breaking 
either the bank or the minds of the engineering team.

While there is a wide variety of experience and systems in use across the collections 
at Yale, linked open data was merely an interesting concept before the project to build 
LUX. Efficient and usable technology was needed that did not replace the systems of 
record but enhanced access to them. Research as to which technology platforms would 
meet the needs of the project was required, and is valuable to consider in the broader 
context, as it represents a difficult decision that institutions must face in their own 
implementation paths.

Requirements
To ensure a fair comparison of systems and architectures, 30 requirements were 
established before research began, under the headings: data, search and query 
capabilities, performance and developer happiness. Over a period of four months, seven 
different systems were assessed, before selecting two, highly capable contenders. 

The initial selection of candidate technologies was done based on several core 
“must have” requirements, the most discriminating of which was that the final 
system must be able to perform both graph searches to leverage the relationships in 
the data and textual keyword queries that treated the information as JSON records in 
a more traditional (and therefore familiar and intuitive) fashion. Secondly, it must be 
performant enough to generate facets across large result sets, including using values 
obtained through following relationships in the graph. 
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The requirement list also included the ease of ingesting, indexing, transforming, 
securing and retrieving records; support for tokenization and stemming of text in 
multiple languages, assigning and customizing relevancy scores, geospatial data, and 
the generation of facets; support for boolean, fielded, range (e.g., date or numeric) and 
hierarchical queries; support for geospatial and graph queries; the use of standards, 
APIs and code libraries, along with the ready availability of documentation and vendor 
support for the product.

In assessing the market, it became obvious that there were two categories of 
systems which would both require significant investment of time and resources, and 
that making the wrong decision would be catastrophic for the project unless it was 
caught early enough to swiftly change direction.

Multi-modal Solution vs System Integration
The first category was a single multi-modal system that could process both graph and 
document style queries simultaneously. It was immediately clear that there were no 
open-source options in this category, and only a very small number of vendors with 
realistic solutions. The alternative was to find the most capable set of products to 
manage records, document searching and graph searching, and then integrate those 
tools in a more distributed architecture, as in Figure 2. There is abundant availability of 
open-source or cloud-based tools for this second category; however, the time needed 
for the integration would reduce the amount of effort that could be applied to the 
discovery platform.

Figure 2: Multi-Modal versus Integrated Systems Architectures.
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Through the assessment process, combinations of Amazon Web Services tools 
(Amazon, 2024), such as Neptune, Elastic, and DynamoDB, and more openly available 
products were considered. In both cases, the amount of effort that would have been 
required to even attempt to have an integrated query that was performant enough 
to meet the baseline requirements was so extensive that they were discarded from 
consideration. After also discarding products that claimed performant multi-modal 
capabilities but in practice could not deal with the data, the final choice came down 
to two products: a true multi-modal system, and an externally built integration of a 
highly performant graph engine with the Solr text indexing system.

After extensive testing with real data at scale, both products were highly capable 
and were approximately the same total cost of ownership, taking into consideration 
licensing and hardware requirements. The deciding factors were the longevity of the 
companies involved (one was a startup, the other well-established), the availability of 
support and documentation, and testimonials from existing users of the platforms. A 
further consideration was that the selected system could also function as just a document 
database, thus giving the project a fallback path if the graph functionality turned out to 
be too complex or too slow in the available time for implementation. These secondary 
factors tipped otherwise very balanced scales in favor of MarkLogic (Progress, 2024).

Solution Architecture
The overall architecture for acquiring, processing and loading data was informed by the 
need for a single system to manage the information, that would need to be loaded with 
the final records, rather than being able to construct them on the fly from a triplestore. 

To remain synchronized with changes in the distributed systems of record, each 
of the participating units implements the IIIF Change Discovery API (IIIF, 2021), 
which is in turn built upon the W3C’s Activity Streams 2.0 specification (W3C, 2017). 
This pattern was selected as image content was already available via the more well 
established IIIF specifications, and thus adopting another API from the same suite was 
both technically and politically easy. The Change Discovery API describes the update 
events that have occurred to the records in chronological order, such that a harvester 
can walk from the most recent change backwards in time until the point at which it last 
processed the stream, retrieving new and updated records over the web and deleting 
records that should no longer exist. The units also produce large dump files with all of 
the records to avoid millions of HTTP requests at the initial load time. These are not 
referenced from the activity stream, but the value of this functionality will be provided 
to the IIIF consortium as feedback on the specification to be considered for inclusion in 
a future version.
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The external data sources do not provide the Change Discovery API for their content, 
with the exception of the Getty Vocabularies; instead they are downloaded as dump 
files, if available, and loaded wholesale into record caching infrastructure for ease of 
access, or downloaded when needed during the subsequent processing. Dump files are 
greatly preferable, to avoid millions of requests over the network to retrieve individual 
records from around the world, even if only a small fraction of the dataset is used. 
These records are then mapped and transformed into Linked Art, as described in the 
previous section.

After all the records are synchronized to a single virtual machine, they are processed 
in parallel; the algorithm uses only the information from a single record at once, and 
therefore the order in which the records are encountered does not matter. While this 
introduces challenges, it is important for the scalability of the reconciliation and 
enrichment pipeline, as with 41 million records in the resulting system, it would take 
more than a month of processing using a single process at a time.

The processing pipeline uses only open-source products, including PostgreSQL for 
caching the harvested, intermediate and final representations of the records and Redis 
for extremely fast access to a key/value store, necessary for managing the concordances 
between the 100 million+ URIs involved. The processing is implemented in Python, as a 
familiar language for data engineers with an abundance of existing libraries and tools. 
It has three core phases: 

1. The records are reconciled by initially considering URIs that are claimed as 
identifying the same entity, for example an equivalence between the same 
concept in two different authority systems. If there aren’t any such URIs provided 
or discoverable, it attempts to exactly match the name of the record against the 
closest domain and entity type authorities in turn. For example, a person from 
a library record would first be matched against the Library of Congress Name 
Authority File, and then if there was not a match, proceeding to other sources. 
The matched records are then processed in the same way to collect more and 
more equivalents through the network of linked open data.

2. Once reconciled and the identifier set has been established, all of the records have 
their identifiers and outbound links to other records updated to the internal URI 
used by LUX.

3. Finally, all of the records with the same internal URI are merged, some final 
tidying is performed and the dataset is exported to load into MarkLogic where it 
is ready for use.
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System Optimization
In early phases of the implementation, the processing pipeline materialized all the 
RDF triples in the JSON-LD records into Marklogic to ensure all of the information was 
available for graph queries. It quickly became apparent that, at the scale of data in LUX, 
we needed to optimize the indexing for the interactions we knew were necessary, rather 
than the more traditional approach of indexing everything in the triplestore.

The first change was to create artificial triples for indexing purposes in the 
data processing pipeline. For example, the relationship between an object and the 
person that created it could run through three triples (object created_by/part/
carried_out_by person) rather than just one, which meant that the system needed 
to perform unnecessary joins across large intermediate result sets. To alleviate this, 
we added additional “shortcut” triples to prevent the need for the joins, in this case 
lux:agentOfProduction. This also allowed us to deal gracefully with slightly different 
data structures, including whether the person carried out the production as a whole, or 
only part of it.

Once we had established the set of queries, we also built a custom generator for the 
triples rather than relying on the JSON-LD expansion algorithm. This proved to be many 
times faster, and let us materialize only the triples that we needed to power the searches, 
reducing the dataset’s size on disk by approximately half. While the unnecessary triples 
did not affect performance at run time, they require significant time to generate and 
load, and then disk space to store. External uses of the same dataset would not be 
affected, as every triple is present in the publicly available JSON-LD records, and thus 
we have both semantic precision when needed, and performance for our applications.

The queries were initially developed using SPARQL (W3C, 2013); however, with 
performance testing, we found that the MarkLogic query language called CTS was 
many times faster to execute. By aligning the document identifier used for record-
based searching with the URI of the entity described in the document used in the graph 
queries, we could then join graph and document queries together very efficiently. 
This allows us to use the right tool for the job: document search for relevance and text 
queries, and graph search for connections between entities in the dataset. MarkLogic 
also has another API called Optic; however, at the time of implementation it was not as 
performant for our use cases as CTS.

Evaluation
By thinking outside of the traditional linked data box of SPARQL and triplestores, and 
using the right tool for the job in terms of documents and graphs, we were able to create a 
highly scalable and performant system. Furthermore, by adopting a reasonably-priced 
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commercial product, we could focus limited developer resources on understanding and 
solving our specific problems, rather than building an integration architecture which 
would need constant maintenance. We feel that linked data technology is ready for the 
cultural heritage sector today and is well-suited to dealing with the Linked Art data 
model; however, care must be taken to make the choice that is appropriate for the 
project or product. 

Cross-Collection Discovery
The best data model, cleanest and most precise data, and most sophisticated technology 
platform would all be worthless without an intuitive and usable web application to 
allow users to interact with the knowledge maintained by the system. Building a 
discovery platform on top of a graph rather than a traditional relational or document-
based system enabled us to rethink received wisdom around implementation and user 
experience patterns to produce something innovative. This section will not deal with 
the LUX user experience or interface design directly, but instead focus on the overall 
lessons learned from doing that work.

User Experience Paradigm
So far, the discussion has been couched in technical terms of searching and queries; 
however, as Roy Tennant has famously said, ‘only librarians like to search, everyone 
else likes to find’ (Tennant 2001). The user experience paradigm can easily shift to 
finding or discovery rather than repeatedly searching, given the use of linked data. 
This can be managed across collections through the adoption of a single, appropriate 
conceptual model, used to consistently expose the relationships between entities, 
rather than merely presenting the name of the entity as an unactionable string in the 
user interface, or treating it as a search term and taking the user to yet another list 
of results.

By presenting a record about the entity, for example the Person record for Roy Tennant 
as quoted above and captured in Figure 3, the user can explore the knowledge graph in a 
mediated and controlled way. The user interface presents the information about the person, 
along with the relationships with the items in the collections (for example the works that 
the person has written) and other entities (such as their nationality or place of birth and 
their occupations). Further, the graph can be leveraged to discover hidden relationships 
by determining frequent co-authors, the subjects that the author commonly writes about, 
or places that they write about or publish at. This allows the user to easily focus in on what 
they are looking for, and at the same time gain more contextual information about the 
people, places, events and concepts in the cultural heritage landscape.
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Figure 3: Screenshot of the LUX view for the record about Roy Tennant.

Given the new functionality available, the decision was made to try to keep the user 
interface as clean and familiar as possible for people accustomed to using museum, 
archival or library search systems. This also helps to bridge the conceptual gaps 
between domains—searching for a natural history specimen is typically not performed 
in the same way as searching for a book, a painting or within an archival hierarchy, 
yet all of these are included within the cross-collection dataset. This meant that the 
front-end application required extensive design work, continuous implementation 
and refinement effort, and has been tested with a variety of users.

Building an Application on Linked Data
There were two primary lessons that were learned through the development of a front-
end application interacting directly with linked data. These are the necessity of the 
record as a construct, and that web caching infrastructure can support the burden of 
interlinked records without duplicating information across those records, leveraging 
the architecture of the web.

One of the tendencies of Linked Data aficionados is to emphasize that the record 
is no longer necessary, and there is only a single graph of all knowledge. However, 
nothing could be further from the usability-required truth that everyone, from content 
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managers to data and software engineers to end users, thinks in terms of records or at 
the very least in terms of distinct entities which might as well be represented as records. 
In order to build an application within a reasonable amount of time, a reasonable budget 
and without sending software engineers back to university for graduate degrees in graph 
query optimization, maintaining the record construct was essential. Furthermore, the 
computational costs of repeatedly constructing the same sub-graphs needed to render 
the information to the end user, or to compute the counts for facets on result sets, is 
overwhelming. One solution is to introduce a cache for those computed sub-graphs, 
materializing them into a discrete, serialized chunk of JSON-LD, which is functionally 
equivalent to a pre-constructed record.

The architectural design of the interactions between the web application and the 
knowledge graph was also illuminating in terms of what was intuitively felt to be 
feasible by the software engineers, and what turned out in practice to work well. There 
was a great desire to deliver all and only the information necessary from the dataset to 
the front end via a custom-built API, with the rationale being that it would be too slow 
to deliver all of the information about a particular entity, and too hard for the front-
end application to extract the information from the deeply-nested record structure. 
However, the prior decision to use React (a development library that creates a single 
page application which loads once and then retrieves information via javascript calls 
to render) combined with the use of multiple layers of web caches meant that the 
performance was always well within pre-established acceptable bounds of rendering 
the layout in under a second, and the details in under three seconds. The web caches are 
easy to maintain and optimize, as the searches are structured in a systematic way, and 
the interactions with the data are via the static JSON-LD representations, rather than 
dynamically constructed responses. As React and the browser maintain internal caches 
as well, the application can extract the aspects of the record that are needed without 
requesting another representation. For example, the same cached response will be used 
to generate the name of the link in one page, the entry in a results list and the full record 
view if the user clicks through to it. As the graph is richly connected, the same records 
are likely to be used many times in a single user session. As such, the user’s experience 
is improved by this REST-oriented paradigm, and not degraded in any way.

The implementation of the front-end application was made easier by intentional 
designs in the data structures of the knowledge graph. In particular, the consistent use 
of patterns within the data, as described in section 2, allowed javascript components to 
be built that extracted, interpreted and rendered the pattern. These are then composed 
into higher level components and reused to produce the different page layouts. This 
consistency and rigor in the data has downstream benefits in terms of development 
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time, maintenance, the ability to change the application without completely refactoring 
it, and the relative independence of the front end from the backend dataset or query 
engine. This lowers the total cost of ownership over time dramatically, and at the same 
time allows easy reuse of either the data or the code. For example, we have used the same 
front-end application over top of a completely static site with no query functionality at 
all, and while it (of course) relies on starting with a link and following the relationships 
in the graph, the code did not need to change to present a useful interface. We have 
also used the same front-end application code with some extremely minor cosmetic 
changes to create a user interface for the discovery of research datasets, managed 
using the same data structures within a MarkLogic back-end. Thus, the same system 
gracefully degrades in the absence of back-end functionality, and can be reused 
without refactoring for new domains, providing strong evidence of a highly sustainable 
codebase.

Hypermedia API
The “follow your nose” approach of knowledge discovery works well if everything is 
linked both to and from everything else. However, in a highly connected knowledge 
graph like LUX, having every relationship maintained bidirectionally would be an 
enormous overhead. For example, the concept of “books” would need to have an 
explicit reference to each of the millions of books in the library, and adding any new 
record would require updating every record that it references with the corresponding 
back link. Instead, LUX follows the Linked Art API’s recommendation of linking from 
the child to the parent, or from the many to the few. This recommendation means 
that there will not be records with thousands or even millions of links in the “book” 
or “specimen” cases, but instead each of the millions of books and specimens each 
links once to the respective concept. For example, a photo album with 100 pages, each 
of which is described separately, would be the target of the links from those pages, 
rather than linking to them directly. However, when you are on the photo album page, 
the artist page or the state page, the user needs to be able to discover those referring 
records without waiting beyond the acceptable page load times.

The solution adopted is to search for the records that refer to the current one. Given 
an index of the references, as maintained by the triplestore aspect of the back-end 
product, this is extremely fast and adds almost no overhead to the system for direct 
relationships. The page then renders the first few results of the search and links to 
the full search results page for the user to transition between the record and the set of 
records that refer to it. Initially, this was accomplished by writing the queries into the 
page; however, this proved to be brittle in the face of a changing back-end query syntax, 
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changing data model, or other iterative work. Much of the impact of the separation of 
the application and the data, as described in the previous section, was undone by tightly 
coupling them again via the queries.

To tease the systems apart again while maintaining the functionality, we use the 
Hypertext Application Language (HAL) (Kelly, 2023) to provide named search links 
that the front end can follow and receive a standardized response, rather than having 
to construct that link itself. The links are kept separate from the semantic knowledge 
using the standard-defined_links property. The links are added at request time by the 
middle tier system, which tests whether there will be at least one record that matches, 
and thus if the front end sees the link in the response, it knows that retrieving the 
representation will provide additional information. As this is part of the response, the 
query links get cached and thus the one-time cost of performing these tests is quickly 
mitigated.

This indirection through the named link provides several benefits. Firstly, it 
separates the back-end query technology from the front-end, thereby decoupling 
the two systems. The same code would work in exactly the same way with an entirely 
different query language, because the front-end doesn’t need to construct or 
manipulate it, only follow the provided link. It also separates the data model specifics 
from the front-end, allowing the two to iterate more independently. We could change 
the semantic definition of a particular query to include further cases, and the front-end 
code would never notice the change. Finally, it creates a better division of skills needed 
between front- and back-end engineers. The data and software engineers that deal 
with provisioning the search indexes can configure and name the queries more easily 
than a front-end engineer can create them, especially in the face of changing back-end 
capabilities and data patterns.

The separation also works because the response follows the paged collection 
pattern from the W3C Activity Streams standard. The specification defines collections 
of items, coalesced into pages, which are doubly linked via next and previous links, 
allowing a consuming application to walk forwards or backwards through conveniently 
sized subsets of the overall collection. It was easy to implement for search results, 
facet results and the more complex related list responses that also have specific labels 
for each result. This gives a standard structure for the producing and consuming 
implementations to work with, rather than needing to reimplement technology-
specific formats for different uses. 
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Evaluation
The patterns and solutions established have been tested in a practical sense by the 
ongoing efforts to improve LUX, and to reapply the paradigm in other domains within 
Yale. With a different dataset using Linked Art as the baseline, it was less than a person-
day of engineering effort to stand up a new system to manage and render that data, 
including with several new indexes and features. This was accomplished by reusing the 
existing components with some newly configured labels and adding a handful of new 
HAL links, by a relatively junior software engineer.

The query structure has changed after the HAL links were added to move the scope 
of the search (objects versus people, for example) into the URI from a query parameter. 
The front-end application did not need to update the record pages at all, despite using 
a dozen or more queries, as it simply followed the new HAL links. 

The performance of the system is improved by the aggressive use of web caching, 
ensuring that the request only gets all the way to the database when it is really something 
that has not been done in the last week. Performance testing of the system without the 
cache allows for 150 concurrent queries, but in regular operation we have never come 
close to this number as the vast majority are handled by the different caching layers. 
This approach relies on the consistent identification of records and using a single static 
representation of them, rather than dynamic queries constructing application specific 
structures. While there is currently only one front-end application, in the not-too-
distant future there will be more that use exactly the same back-end infrastructure, 
and that will also prove (or disprove) the value of the consistency.

Conclusions
We have endeavored to demonstrate the feasibility and value of an approach that 
rethinks the notion of cross-collection discovery in the context of a knowledge 
graph, built using standards such as Linked Art, IIIF, Activity Streams, the Hypertext 
Application Language and more. In particular, the foundational ontology design of 
Linked Art allows the multiple domains within natural and cultural heritage to happily 
co-exist and be richly interrelated without significant work to re-describe the source 
materials.

The usability of Linked Art as both a consistent and coherent data model and an 
easy to understand and implement API was critical to the success of LUX. Consistency 
in the data enabled consistency and simplicity in the implementations that produce, 
transform and interact with the resulting knowledge graph. The API structure based 
on records was also essential, as it eased the burden of the implementation and 
allowed functionality such as faceting to be computationally tractable using standard 
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techniques and tools. The use of a multi-modal database that supports both graph- 
and record-based search simultaneously allowed the right tool to be used for different 
aspects of the desired functionality. Finally, the use of web caching infrastructure and 
the indirection provided by HAL links for named searches helped to ensure that the 
front-end was performant, easy to build and adapt, and cheap to maintain and reuse.

Yale hopes that by adopting open standards and publishing the LUX codebase as 
open-source software, other organizations will be able to learn from, use and contribute 
to a practical and sustainable cultural heritage knowledge graph that could span 
across institutions and domains. If other organizations were to also publish their data 
according to Linked Art, and made harvestable via IIIF’s Change Discovery API, then 
organizations that wish to integrate and reuse that knowledge could do so by following 
the same approach that Yale has with LUX. This would generate a valuable network 
of knowledge without requiring a single, centralized and ultimately unsustainable 
database; the incentive to participate in the network is to have a local cross-collection 
discovery platform. Keeping this local discovery platform updated with accurate 
information then increases the value of the network as an ecosystem, and allows other 
organizations to select which systems to use for enriching their own records rather 
than being forced to use self-proclaimed authority systems. Given the experience with 
LUX, this future which is both close and bright promises to provide unprecedented 
access to the collections of the world’s museums, libraries, and archives.
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